贝博足彩

ENGLISH

学术会议

21-06-2022

2022春季人民贝博足彩偏微方程小型研讨会II

主办单位: 贝博足彩人民贝博足彩数学科学研究院/数学学院

2022春季人民贝博足彩偏微方程小型研讨会II

日程安排

20220625日,周六,下午

腾讯会议ID:432-271-941

时间

会议内容

主持人:周蜀林(北京贝博足彩)

14:20-15:05

陶有山(上海交通贝博足彩)

15:05-15:50

伏升茂(西北师范贝博足彩)

15:50-16:00

休息

主持人: 李玉祥(东南贝博足彩)

16:00-16:45

姚珧(新加坡国立贝博足彩)

16:45-17:30

闫建璐(南京航空航天贝博足彩)

2022春季人民贝博足彩偏微方程小型研讨会2

报告题目与摘要

自食、扩散和交错扩散

伏升茂

西北师范贝博足彩

报告摘要:主要介绍自食、线性自扩散、分数型交错扩散和食饵趋向对捕食者-食饵阶段结构模型动力学性态的影响。

演讲人简介:伏升茂,现任西北师范贝博足彩数学与统计学院教授、博士研究生导师、贝博足彩生物数学学会常务理事。主要研究方向为偏微分方程与生物数学,共撰写和发表论文80余篇。主持完成4项、参与完成6项国家自然科学基金。曾获西北师范贝博足彩教学名师奖等。

On Keller-Segel-type systems with signal-dependent motilities

陶有山

上海交通贝博足彩

报告摘要:This lecture begins with briefly reviewing some boundedness and blow-up results on the Keller-Segel-production systems with signal-density suppressed motilities. Then, this talk reports a recent co-work, with Michael Winkler (Paderborn), on global weak solvability for a Keller-Segel-consumption system involving singularly signal-dependent motilities.

演讲人简介:陶有山,上海交通贝博足彩数学科学学院特聘教授。曾先后于南京贝博足彩、复旦贝博足彩、苏州贝博足彩分别获得数学学士、硕士和博士学位。主要研究方向为偏微分方程,特别是趋化交叉扩散方程,已在JEMS, PLMS, JFA, ANIHPC, SIMA, SIAP, Inverse Problems等国际数学期刊上发表论文90余篇,MR引用3400余次;2018-2021年连续四年入选科唯安全球高被引科学家 现担任2份国际期刊Nonlinear Analysis: RWAEMS Surveys in Mathematical Sciences的编委。

Aggregation-diffusion equation: symmetry, uniqueness and non-uniqueness of steady states

新加坡国立贝博足彩

报告摘要:The aggregation-diffusion equation is a nonlocal PDE that arises in the collective motion of cells. Mathematically, it is driven by two competing effects: local repulsion modeled by nonlinear diffusion, and long-range attraction modeled by nonlocal interaction. In this talk, I will discuss several qualitative properties of its steady states and dynamical solutions. Using continuous Steiner symmetrization techniques, we show that all steady states are radially symmetric up to a translation. (joint work with Carrillo, Hittmeir and Volzone). Once the symmetry is known, we further investigate whether steady states are unique within the radial class, and show that for a given mass, the uniqueness/non-uniqueness of steady states is determined by the power of the degenerate diffusion, with the critical power being m = 2. (joint work with Delgadino and Yan).

演讲人简介:Yao Yao is currently an Associate Professor of Mathematics at the National University of Singapore. She received her BS degree from Peking University in 2007, and PhD degree in 2012 from UCLA. She was a Van Vleck Visiting Assistant Professor at University of Wisconsin-Madison in 2012-2015, and an Assistant Professor at Georgia Institute of Technology in 2015-2021. Her research focuses on the analysis of partial differential equations arising in mathematical biology and fluid dynamics, especially on the equations with a nonlocal transport term. She was a recipient of the NSF CAREER Award in 2018 and Sloan Research Fellowship in 2020.

Global existence and boundedness for some chemotaxis models

闫建璐

南京航空航天贝博足彩

报告摘要: In this talk, we consider four types of chemotaxis models in biomathematics, which describes the directional movement of cells in response to the concentration gradient of a diffusible chemical signal. These four models are Keller-Segel systems, with nonlinear diffusion and singular sensitivity, heterogeneous Logistic sources, gradient-dependent chemotaxis sensitivity as well as p-Laplacian diffusion and gradient dependent chemotactic sensitivity, respectively. This talk is devoted to studying the global existence and boundedness of weak or generalized solutions for these chemotaxis models.

演讲人简介:闫建璐,南京航空航天贝博足彩讲师。2021年毕业于东南贝博足彩,同年获得理学博士学位。20199-20209月受国家留学基金委资助在德国帕德伯恩贝博足彩交流学习。主要研究方向为偏微分方程,特别是Keller-Segel模型,发表SCI论文3,主持江苏省青年基金1。

学院办公室:010-82507161

本科生教务:010-62513386

研究生教务与国际交流:010-82507161

党团学办公室:010-62515886

在职课程培训班:010-82507075

贝博足彩人民贝博足彩数学科学研究院 复旦贝博足彩数学科学学院 清华贝博足彩丘成桐数学中心 北京贝博足彩数学科学学院 贝博足彩科学院数学与系统科学研究院 贝博足彩科学技术贝博足彩数学科学学院
友情链接
 

邮编:100872

电话:010-82507161

传真:010-62513316

E-mail:mathruc@ruc.edu.cn/mathrucdw@ruc.edu.cn

地址:北京市海淀区中关村大街59号贝博足彩人民贝博足彩数学楼

数学学院公众号

版权所有 贝博足彩 升星提供技术服务
贝博足彩(发展)有限公司